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the structure determination could then proceed in a 
straightforward manner. More detailed descriptions 
of these applications will be published later (SjSlin, 
Alenljung, Svensson & Prince, 1988; SjSlin & 
Svensson, 1988). 

The authors would like to thank D. M. Collins for 
a critical reading of the manuscript and many helpful 
suggestions. 

(a) 

• 

(b) 
Fig. 4. Overlaid sections of electron density maps for calcium- 

containing fragment 1 of bovine prothrombin. (a) An Fo map 
with MIR phases to 3.2 ,~. (b) Map with phases extended to 
2.4,~ by solvent flattening and maximum entropy. Noise level 
in both maps set at lo" level. 
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Abstract 

The approach by Harker & Kasper [Acta Cryst. 
(1948), 1, 70-75] which led to the first inequality 
relationships between structure factors has not pre- 
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viously been applied to the space group P1 and there 
seems to have been a view that it could not give useful 
results for that space group. The idea has also been 
advanced that Harker-Kasper inequalities are con- 
tained within the complete set of determinantal 
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inequalities derived by Karle & Hauptman [Acta 
Cryst. (1950), 3, 181-187]. It is shown that the Harker- 
Kasper approach can be applied in space group P1 
and gives inequality relationships which are distinct, 
at least in form, from those derived from deter- 
minants. Indeed, in some cases, a simple Harker- 
Kasper inequality can be more effective than an 
equally simple determinantal inequality in restricting 
the allowed values of three-phase invariants. 

Introduction 

The first steps in direct methods were made by Harker 
& Kasper (1948) who applied the Cauchy inequality 

agbj <- E laj 2 E Ibj 2 (1) 
j = l  j = l  j = l  

to derive inequality relationships between structure 
factors. They found useful relationships for determin- 
ing the signs of real structure factors for both cen- 
trosymmetric and non-centrosymmetric structures but 
the procedures for finding inequality relationships 
were not very systematic. The more complete and 
systematic approach of Karle & Hauptman (1950) in 
deriving determinantal inequalities was much prefer- 
red; indeed the view has been expressed that deter- 
minantal inequalities 'include' those obtained by the 
Harker & Kasper approach and also that the latter 
approach gave no useful information for the space 
group P1. 

Although inequality relationships offer very little 
these days in practical approaches to structure solu- 
tion they do offer useful insights into the factors which 
govern phase-estimating probabilistic formulae. For 
this reason it seems worthwhile to look again at 
Harker-Kasper inequalities, especially for the least 
restrictive and most general of all space groups, P1. 

Harker-Kasper inequalities for P1 

In the usual notation we write the unitary structure 
factor for space group P1 as 

N 

U(h)=  E nj exp 27rih.rj. (2) 
j = l  

For the sum of two structure factors we may write 

N 

U(h) + U(k) = E nj(exp 27rih. rj + exp 27rik. rj) 
j = l  

(3) 

which by simple manipulation becomes 
N 

U(h)+ U ( k ) = 2  Z njexp zr i (h+k) . r j  
j = i  

x cos 7r(h- k) .  rj. (4) 

We now apply the Cauchy inequality (1) with 
~ 1 / 2  aj= nj exp wi (h+k) . r j ;  

bj= 2n)/z cos zr (h-k) . r~ .  

Then 

and 

N N 

E lajI == E nj= 1 (5a) 
j = l  j = l  

N N 

Z Ibj 2=4  2 nj cos 2 7 r ( h - k ) . r j  
j = l  j = l  

N 

=2  ~ n j [ l + c o s 2 7 r ( h - k ) . r j ]  
j = l  

=211+ U(h-k ) l cos~o(h -k ) ] .  (5b) 

This gives the simplest inequality 

I U(h) + U(k)l =-< 211 + I U(h-k)l  cos ~ ( h - k ) ] ,  

(6a) 

which has a curious form involving the isolated phase 
angle q~ ( h -  k) which is not a structure invariant. The 
first version of this paper then stated: 'However, the 
phases ~o(h) and q~(k) are implicit in the sum of the 
complex quantities U(h) and U(k) which appears 
on the left-hand side so that in some opaque way a 
three-phase invariant is involved.' One of the referees 
investigated this point and found that the statement 
was incorrect. The referee recast inequality (6a) in 
the form 

I U(h)+ U(k)lZ- 211 + I U(h-k)l  cos ~o(h- k)]-< 0 
(6b) 

and by computer examined the value of the left-hand 
side with change of origin. It was found that, while 
the value was always less than zero, it did nevertheless 
change with the origin. Apparently an inequality 
relationship derived by the Harker-Kasper approach 
does not need to involve structure-invariant quan- 
tities, a misconception which this author and, per- 
haps, many others have had. 

The next case we consider is when the index triples 
h and k are linearly independent. In that case there 
can always be chosen at least one origin for which 

q~(h) = ~(k) = 0. (7) 

In this case both the structure factors are real and 
positive so that 

N 

IU(h)l+lU(k) = Y nj(cosZTrh.r~ +cosZzrk.r j)  
j = l  

N 

= 2 Z nj cos 7r(h+ k) .  rj 
j = l  

× cos 7r(h- k) .  rj. (8) 
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Applying the Cauchy inequality with 

a~ = (2nj)  I/2 COS r r (h+k) ,  rj; 

bj = (2nj)  1/2 cos "rr(h-k) .  rj 

and using (5b) gives 

[I U(h)l + I U(k)l] 2-<[1 + I U(h+k) l  cos q~(h + k)] 

×[1 +[U(h-k)[ cos ~ ( h -  k)]. 

(9) 

Again the phases ~o(h+ k) and ~ ( h - k )  stand in isola- 
tion, but given condition (7) the values of two three- 
phase invariants are implicitly contained in inequality 
(9). 

A more general treatment is possible without the 
need for the linear independence of h and k. We now 
write 

IU(h) = U(h) exp [ - i~(h) ]  

N 

= ~ n j c o s [ 2 r r h . r j - ~ ( h ) ] .  (10) 
j = l  

Then 

IU(h)l+[U(k)l 
N 

= ~ nj{cos[2rrh.r j -~o(h)]  
j = l  

+cos  [2rrk.  rj - q~(k)]} ( l l a )  

N 

= ~ 2nj cos {Tr (h+k) . r j -½[~(h )+~(k ) ]}  
j = l  

xcos {Tr(h-k) .r j -½[~c(h)-~o(k)]} ( l l b )  

If one takes 

aj = (2n;) '/2 cos {Tr(h+ k) .  r j-½[~(h) + ~(k)]} 

then 

[a/12 = nj{ 1 + cos [2rr(h + k) .  rj - ~(h) - q~(k)]}. (12) 

Now 
N 

nj cos [27r(h+k) .  rj - q~(h) - ~p(k)] 
j = l  

N 

=cos[~(h)+~o(k) ]  ~ n j c o s 2 r r ( h + k ) . r j  
j = l  

N 

+sin  [~o(h)+~o(k)] E r/j s in27 r (h+k) . r j  
j = l  

where 

= [ U(h+k)[  cos q~(h+k) cos [q~(h) + ~(k)] 

+ U(h+k)]  sin ~ ( h + k )  sin [ ~ ( h ) + ~ ( k ) ]  

= l U ( h + k )  cos ~3(h, k) (13) 

~3(h, k) = ~(h) + ~ ( k ) -  ~(h + k). (14a) 

Combining results ( l l b ) ,  (12) and (13) and with, 
similarly to (14a), 

~3(h, k,) = ~(h) - ~(k) - ~ ( h -  k), (14b) 

we find the most general Harker-Kasper inequality 
for space group P1, 

[I U(h)l + I U(k)l] 2 -<[1 + I U(h+k)l cos ~3(h, k)] 

×[1 +l U(h-k)l cos q~3(h, ~,)] 
(15) 

which involves two three-phase invariants. 

A comparison with determinantal inequalities 

The simplest determinantal inequality involving a 
three-phase invariant is 

1 
u(~) 
u(~) 

o r  

U(h) U(k) 
1 U(k-h)  

U(h-k)  1 
->0 (16a) 

1 - I u  (h)l 2 - I u  (k)l 2 - I U  (h - k)l 2 

+21U(h)U(k)U(h-k)lcos~3(h,~)~O. (16b) 

Usually, but not always, a knowledge of ] U(h + k)] 
makes (15) a stronger inequality than (16b). For 
example, with 

I U(h)l = I U(k)l = I U(h +k)l = I U ( h - k ) l  =0.5 

then (16b) gives c o s  q03(h , k) ~ -1  which contains no 
new information; on the other hand with inequality 
(15), assuming that the first factor on the right-hand 
side equals 1.5, its maximum possible value, gives 
COS qo3(h , ~,) --> --2/3, which is new information. 

The power of expression (15) in restricting the value 
of cos ~o3(h , k )  is stronger as I U(h+ k)l becomes smal- 
ler so that if in the case just considered [U(h+ k)[ = 0 
then c o s  qo3(h , k) -> 0. However, if we take 

[U(h)l=lU(k)l=[U(h-k)]=0.6; [ U ( h + k ) ] =  1 

then the Harker-Kasper inequality (15) gives 

cos q~3(h, ~,) >- -0,47,  

while the determinantal inequality gives 

cos q~3(h, ~,) >-- 0.185 

which is more restrictive. The general rule seems to 
be that if ]U(h+k) l  is small then the Harker-Kasper 
inequality gives more information but if [U(h+ k)[ is 
large then the determinantal inequality is the stronger. 

There is an order-four determinantal inequality 
which involves the four structure factors U(h), U(k), 
U ( h + k )  and U ( h - k )  and should be stronger still. 
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This is 

1 

U(h) 

Uff,) 

U(h+k)  

U(h) U(k) U(h+k)  

1 U ( k - h )  U(k) 

U ( h - k )  1 U(h) 

U(k) U(h) 1 

->0. 

(17) 

An expansion of this determinant involves three- 
phase and four-phase invariants and it is more 
difficult to extract phase information from it than 
from inequalities (15) or (16b). 

Another inequality from P1 

Starting with (11 a) and taking 

a j = ( n j )  1/2 

bj = (nj)U2{cos [2-n'h. rj - q~(h)] 

+cos [27rk. r : -  ¢(k)]} 

one finds 

[ U(h) l+[U(k  ) ]2_< 1+1 U(2h) cos [~(2h)-2~p(h)] 

+½ U(2k) cos [~(2k)-2~p(k)] 

+[U(h+ k)l cos q93(h , k) 

+l U(h-k)l  cos ~3(h, K). (18) 

There can be sets of magnitudes for which inequality 
(18) would restrict cos q~3(h, k,) more than did either 
of inequalities (15) or (16b). Thus with 

IU(h)l=lU(k)l=lU(h-k)l=O,6 
I U(2h)l-- I U(2k)]-- 0; IU(h+k)l--- 0.2, 

inequality (18) gives 

COS ~P3(h, ~,) -> 0"73, 

inequality (15) gives 

cos ~pa(h, k) -> 0.33 

and inequality (16b) gives 

COS ~P3(h, k) ->0"185. 

It is clear that a knowledge of magnitudes other 
than the three directly related to q~3(h, k) gives addi- 
tional information about the restrictions on the three- 
phase invariant. What is true for inequalities will also 
hold for probability relationships and distributions 
and this is the basis of the neighbourhood concept 
(Hauptman, 1976). The way in which the magnitudes 

apply the extra restrictions is clearly seen in the 
context of inequality relationships. 

Concluding remarks 

Simple inequality relationships which come from the 
Harker-Kasper formulation and from Karle- 
Hauptman determinants are seen to differ in their 
structure and to have a relative power which depends 
on whether certain sets of magnitudes are large or 
small. Thus inequality (15) involves the four unitary 
structure factors U(h), U(k), U ( h - k ) ,  U(h+k) ;  the 
determinantal inequality (16b) involves only the first 
three of these while inequality (17) involves the same 
structure factors in a rather more complicated way. 
In their original paper Karle & Hauptman (1950) 
stated that the set of determinantal inequalities was 
'complete' in the sense that no other completely 
independent inequality relationships could be found 
on the basis of the non-negativity of electron density. 
However, the fact that inequality (6b), derived from 
the Cauchy inequality, involves a quantity which is 
not a structure invariant while the Karle-Hauptman 
determinants, by their very nature, are structure 
invariants suggests that the two approaches may not 
formally have the same basis. The necessary and 
sufficient condition for the Harker-Kasper approach 
is that the normalized scattering factor for each atom 
should be real and non-negative so that Inl/2[ 2= n, a 
condition which does not necessarily imply non-nega- 
tive electron density. Whether the Karle & Hauptman 
statement applies to Harker-Kasper inequalities or 
not, what can be said with confidence is that no simple 
manipulations of determinants will yield inequality 
(15). 

Equally, it must also be said that, while the Harker- 
Kasper inequalities have some kind of separate iden- 
tity, they are probably less useful than determinantal 
inequalities on the whole but can be more useful in 
particular situations. 

We may also conclude that the Harker-Kasper 
approach can be applied to the space group P1 and 
gives insights into the magnitudes influencing the 
probable values of q~a(h, k,). 

I must thank both referees of the original version 
of this paper for their useful comments which raised 
important issues and led to significant improvements. 
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Abstract 

A procedure for improving the reliability of the Q 
(translation) functions is presented. The procedure 
involves correlating between maps calculated using 
different sections of the reflection data, these being 
spherical shells divided according to d spacing. The 
peaks in the Q function representing the true shifts 
of the fragment are found to be the most stable under 
such a correlation procedure. The modification has 
been incorporated into a computer program. 

We have found that in unfavourable circumstances 
the correct translational shifts in a Q-function calcu- 
lation may not correspond to the highest peak in the 
map. Indeed, the solution representing the correct 
shifts can sometimes be well down the peak list. Even 
in degenerate cases this situation can arise, as will be 
shown below. 

In this paper we discuss ways of improving the 
interpretation of Q maps, thus reducing the possibil- 
ity of an incorrect translation being indicated and 
used in an attempted structural solution. 

Introduction 
Traditionally the weakest part of Patterson-function 
interpretation "procedures for crystal structure solu- 
tion has been the location of oriented fragments in 
the cell. Much effort has been put into improving the 
reliability of translation ftinctions and several tech- 
niques have been employed to do so (Karle, 1972; 
Langs, 1975; Doesburg & Beurskens, 1983; Bruins 
Slot & Beurskens, 1984; Egert, 1983). 

In our own Patterson-method routines (Wilson & 
Tollin, 1985, 1986) w~ use the Q functions of Tollin 
(Tollin & Cochran, 1964; Tollin, 1966) and perform 
the calculations in reciprocal space. These functions 
find the location of an oriented fragment with respect 
to symmetry elements individually. For certain space 
groups, therefore, there is a built-in degeneracy in 
the Q-function determination, e.g. in P2~212~ three 
Q functions determine six coordinates and hence each 
shift is located with twofold degeneracy. 

Thi~ degeneracy can be exploited in the interpreta- 
tion of the maps by using cross comparison between 
them. Often such an interpretive procedure can elimi- 
nate ambiguities in the Q-function calculations. 
However, the intrinsic problems of translation func- 
tions mean that even such a procedure can give incor- 
rect answers, owing to the coincidence of spurious 
peaks from each of the maps. Further, if no such 
degeneracy exists, there is no means to check the 
results indicated by a Q function other than by trial 
and error of the resulting model in Fourier or tangent- 
recycling procedures. 

'Improving' Q maps 
As was noticed by Karle (1972) and ourselves (Wilson 
& Tollin, 1985), some improvement is often gained 
in the calculation of translation functions (in our case 
the Q functions) when only the outer half [higher 
(sin 0)/A, smaller d spacing] of the data, or some 
outer portion, is used in the calculations. Such data 
will be referred to as 'cut-off' data. The effect on the 
appearance of a Q map resulting from the use of 
cut-off data will now be discussed. 

A typical feature of the Q functions is the appear- 
ance of bands of density in the map, regions of 
considerable linear extent where positive density is 
found (Fig. 1 a). These are not universal, but are very 
common, especially when the model being used is 
small in relation to the asymmetric unit. The peaks 
in the Q map representing the required shifts arise 
from this general plateau region. 

However, when cut-off data are used, these bands 
tend to break up and to become narrower (Fig. 1 b). 
In the new map the peaks will be more likely to 
appear as islands in a sea of negative density, and 
are thus qualitatively more obvious. In this sense, the 
maps calculated with cut-off data are improved. A 
rationale for this improvement is now given. 

The Q functions (Tollin & Cochran, 1964; Tollin, 
1966) are defined as 

Q(Ro) = ~ If~(h)l = E cos 27rh. [rj + Ro 
h j,j'= 1 

- T(rj,+ R0)], 
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